XIEGU G90 Collection

28 februarie 2010

Weekend-DX's

Propagarea care s-a anuntat inca de acum doua saptamani s-a mentinut, astfel incat au fost deschideri extraordinare in benzile de 17 si 15 m, cu propagare constanta pe durata intregii zile. Statii din nord-vest veneau constant pentru ore intregi la 59-59+, spre seara auzindu-se statii din USA la semnale de peste 9!

Am reusit sa lucrez cateva indicative exotice pentru mine.

USA W8ERN 15m SSB
USA K3IPK 15m SSB
Groenlanda OX3KQ 15m SSB
Franta TL0A 15m SSB
Rep. Burundi 9U1KI 15m SSB
Brazilia PY2GH 15m SSB
Puerto Rico KP4BD 15m SSB
Rep.Dominicana HI3TEJ 15m SSB
Canada VX3CX 15m SSB
Kuwait 9K2OK/NLD 17m SSB
Kuwait 9K2OK/NLD 15m SSB
Arabia Saudita HZ1BL 40m SSB


Cel mai greu a fost de lucrat statia din Groenlanda, caci avea in antena semnale foarte puternice din UK si IR. Din fericire, a solicitat putina liniste pentru statii DX din Europa si atunci am putut sa il lucrez!
Am folosit FT857D+ HM vertical (undita)+LDG Z100.
Una peste alta, a fost fain acest weekend!
73 de yo3hjv

26 februarie 2010

Sky Command II, How to.

A lot of people told me that the instructions for Sky Command found on the user manuals are somehow too complicated and not so easy to follow. Some of them complaint about not succeeding to setup the link.
So, I prepared a step-by-step procedure for the Sky Command II.
I used a TS2000 and a TM-D710. Both are "K-Type" versions. Of course, they were "E" type before the mod was applied...



First of all:


  1. The TS2000x is the TRANSPORTER and the TM-D710 is the COMMANDER.
  2. We assume that both Transporter and Commander radios are Sky Command II capable. Mine was modified to do Sky Comm as they was European version. I applied the “K type mod”.
  3. Before anything, go on MAIN receiver and select a convenient HF frequency. TUNE THE HF ANTENNA!
Very important step (from Marco, a italian HAM): RESET FIRST THE TNC ON BOTH RADIOS!!!

Setup the TRANSPORTER (TS2000):


  1. Select on main channel VHF 144.750. This will be the Transporter to Commander channel.
  2. Select on aux channel UHF 438.500. Select CTCSS on aux channel on 100,0 Hz.
  3. Return to the MAIN section of the radio.
  4. Press MENU and scroll to the Menu #62. Press SUB. After pressing the SUB key, the LCD will show something like “MENU 62A-COMMANDER CALLSIGN”.
  5. Here you input the callsign which will be used by the TS2000, in my case, “YO3HJV-1”. {Yes, the callsign is followed by a number! (Explanation: The COMMANDER and the TRANSPORTER use Packet radio to communicate and they need different SSID’s.)}
  6. The input is made as follows: Scroll the letters with MULTI/CH and advance the position of the letter with MAIN(Back) or SUB (Forward).
  7. Store the callsign with M.IN key.
  8. Scroll to “MENU 62B-TRANSPORTER CALLSIGN” and enter your TRANSPORTER CALLSIGN, in my case, “YO3HJV-2”. Follow the previous #8 and #9 step above.
  9. Select MENU 62C. Here you will select the CTCSS code used for UHF data and voice comm with MULTI/CH. In my case, 100 Hz.
  10. Select MENU 62D and choose with MULTI/CH 1200bd. This is the data speed for Packet comm.
  11. Select MENU 62E and choose “T-PORTER”. This tells the TS2000 that is acting as a Transporter.
  12. Press MENU. The panel control in TS2000 will not work because it is set to work remote only (Sky Command II).

Setup the COMMANDER (TM-D710):


  1. Check if you have MENU 7xx enabled. If not, apply the “K Type” mod.
  2. On the “A” receiver (left) dial 144.500 MHz. On the “B” receiver (right), dial 438.500 MHz.
  3. On the “B” receiver set the CTCSS to 100 Hz.
  4. Go to Menu nr. 700 (COMMANDER callsign) and set the callsign as per step #8 (In my case, YO3HJV-1). Press the DIAL button to store the callsign.
  5. Go to Menu nr.701 (TRANSPORTER callsign) and set the callsign as per step #11 (in my case, YO3HJV-2). Press the DIAL button to store the callsign.
  6. Go to Menu nr.702 and set the same CTCSS as per step #12 (100 Hz).
  7. Go to Menu nr.703 and choose the “role” of the TM-D710. In our case, choose “COMMANDER”. Press Dial.

Now, you should be in COMMANDER MODE.



Press “0” to start the link between Transporter and Commander.

To activate the TRANSPORTER, press “1”. The TRANSPORTER should transmit the callsign (in my case, YO3HJV) on the 2m band, and after that, should retransmit the audio feed from HF frequency set as per step #3.


For the rest of the “game”, read the Sky Command section in the user manual of the TM-D710. Is very explicit.

I also tried (and succedeed) to use the Sky Commander with a TH-D7, but this is another story...

73!




PS
Bob Bruniga has the following ideeas:

IDEAS For SKY-COMMAND III for CLUB ops 22 Feb 07
----------------------------------------------------------------------

SkyCommand II was designed for an individual to have remote control of
his own rig on a one-for-one basis. But there are many applicaitons
for clubs that may want to have a group with access to the SkyCommand
HF transceiver and for all to be able to participate in the group
monitoring while one is transmitting. Here is my WEB page that tries
to optimize this type of operations.

http://www.ew.usna.edu/~bruninga/USNAremoteHF.html

Although we can do Group operations with SkyCommand II, there are some
ideas that could make this better, for new users while being fully
backwards compatible with SkyCommand II systems. An overview of the
required changes for group operations for what I call SkyCommand III
are as follows:

1) Use default Generic COMMANDER and TRASNSPORTER calls so that
everyone can set their radio once, and then be able to use any Sky
Command system that is made public with these same generic calls.

2) Use two PL's on the UHF audio link, so that only one PL keys the
remote SkyCommand transmitter, but the other PL (or none) lets all
members of the group chat on the UHF channel for coordination.
Enable a front panel button for selection of CHAT or PTT choice of
PL while operating Sky Command.

3) Have provisions for the multiple COMMANDER radios to BEACON an
APRS status packet periodically that contains their FCC call so that
they can be identified and so that other SKY-III transceivers can
also see who else is sharing the UHF command channel and operations.

4) Have the TRANSPORTER auto-QSY periodically to the APRS channel
and put out a Sky Command status packet to put the HF asset on the
APRS system map showing the current operating frequency.

5) Some provision for additioanl commands for antenna selections.

6) Allow the D700 to operate UHF COMMANDER link on band A UHF so
that band B can be used for 220, 902 or 1296 reception of Sky
Command Audio.

DETAILS FOLLOW: Each of these concepts is further expanded below.

GENERIC CALLS:

Let the default COMMANDER call be CMDR and the default TRANSPORTER
call be TRPTR, and default TRANSPORTER skycommand PL be 123. while
the default USER or CMDR PL is 88. This makes any user able to
monitor a SkyCommand system out of the box, or to go from one public
skycommand station to another. And he can chat with other skycommand
users on the UHF channel without bringing up the HF TX, unless he
selects the special 123 TX PL.

Another advantage of generic callsign operation is that multiple
COMMANDERS can all be in SkyCommand mode and can see the same front
panel HF radio status at the same time.

ALTERNATIVE (a): Another option may be to have the OPTION for public
systems to allow the TRANSPORTER to be GENERIC on receipt and accept
Sky Commands from ANY callsign in this mode. This way, every
existing COMMANDER can control the radio without having to use a
generci call. This keeps the COMMANDER operator legal, since his
call will be in every packet.

ALTERNATIVE (b): Another option for COMANDERS is to allow for
GENERIC receipt and display of Sky Command data independent of the
TRANSPORTER call. This way, each COMMANDER does not have to change
his transporter callsign for each different GENERIC system that
he wants to control.

UHF PL CONSIDERATIONS:

1) While in Sky-Command mode, the COMMANDERS need a front panel
button to turn on and off sky command PL. This way, all the
group COMMANDERS can turn off special PL and talk/coordinate
back and forth on the UHF simplex channel without keying up the
sky-command radio. This allows very powerful use of HF radio in
local groups, and very simple to implement. I suggest naming
this soft button toggle between "PTT" and "CHAT" as it toggles
between the SkyCommand PL and the non-skycommand PL or off.

SKYCOMMAND COMMANDER OBJECT BEACON PACKETS:

While a COMMANDER is in SkyCommand III mode, it should include some
periodic OBJECT packets to tell others on the UHF frequency who it
is and where it is. This should beacon once every 10 minutes or
each time after the skycommand RX is activated.

FORMAT: THe format for the status packet (in APRS OBJECT format)
would include the MYCALL as the object name and TIME/position, etc.
This is because the actual packet will be originated by the generic
"CMDR" callsign and so without the OBEJCT packet, we cannot tell
who is doing what. Here is a suggeted format:

CMDR>APKxxx:;MYCALL-SS*HHMMSSzDDMM.__N/DDDMM.__W$SkyCommand TX myname

Which will show up nicely on the D700 as:

MYCALL-SS:
SkyCommand
TX Bob

THe TX is transmitted if the SkyCommand PL is set, and an "RX" will
show if the SkyCommand PL is not set.

LIST: On receipt, these objects can go to the normal APRS list or
to the DX list? While in SkyCommand III mode, there should be a
"LIST" hot key on the D7 or D700 radio that will call up this list,
and display only other SkyCommand stations.

PACKET MUTE:??? New COMMANDER radios need to have a 20 dB mute when
monitoring the UHF channel so that VOICE can be heard but packets
are muted. Or is CTCSS Set in Skycommand mode? If so, then it needs
to recognize BOTH the PL's for PTT and for CHAT mode only.

CROSSBAND???? While Sky Commander with TX PL is transmitting on HF,
does the VHF audio link remain up and provide a copy of the transmitted
voice so that all monitoring stations can hear it? This can help in
CHAT mode with PL's and muting packets? More thought here...


SKYCOMAND III TRANSPORTER APRS ANNOUNCEMENT PACKETS:

SkyCommand III needs an APRS Station packet from the Transponder
radio periodically that goes out on the APRS (144.39 in the USA)
channel to beacon the HF radio (IF) status for all surrounding
APRS mobiles (on 144.39). This beacon packet will put the public
SkyComand III station on the MAP, and alert all drivers of its
presence and operating frequency. In most cases, this packet
will go only DIRECT.

TRPTR>APKxxx:;TRPTRCALL*HHMMSSzDDMM.__N/DDDMM.__W$145.550Sky441.550
MHz MM.KKK MHz

Which will show up nicely on the D700 as:

TRPTRCALL:
145.550Sky
441.025MHz
14.123

Notice the Frequency is inlcuded. But the inclusion of the
UHF is optional and if not used, then the HF channel can show.

The Transporter needs to auto-qsy for one-second periodically to
put this out on the APRS frequency and not the SkyCommand channel.
My guess would be once every 10 minutes if no-change in frequency
and within one minute of each frequency CHANGE. THis results in
no transmissions while fine-tuning, but an update within a minute
after a change is made.

Also, the SkyCommand Transporter needs to INITIATE a radio status
packet (in IF... format) once every minute on the UHF command
frequency to update all monitoring COMMANDERS that may begin
monitoring.

Note: Backwards compatibility. For SkyCOmmand II, a BT and BEACON
can be set in packet mode and it will continue to work in SKyComand
mode, but it is not on the APRS channel, only the SkyCOmmand
channel.

ANTENNA SELECTION:

SkyCommand III needs to be able to select ANTENNA on the TS-2000.
ALthough MEMORY channel on TS-2000 can remember ANTENNA 1/2, an
external antenna selection is needed for selecting fixed beams or
othere options on the same band. More later on this subject?

SEMI-PUBLIC OPERATION:

Provision needs to be made in Sky Command III for the uplink command
channel to be on 900 or 1296 MHz and private, while the VHF or
User Listening channel can be on VHF or UHF. In otherewords, the
Sky Command III should be able to operate in RECEIVE-ONLY mode and
give the user the full status of the SkyCommand Radio display, even
if he is not commanding and even if he cannnot press [0] to start
the link.

CONVERSLY, provision needs to be made for Sky Command to use 220, 900
or 1296 bands in place of the VHF audio link. This reduces the demand
on the 2m band for these links. The Remote controlled site may have
to add one of these 220, 902, or 1296 band transmitters just for the
audio, but the D700 should be able to receive this audio in place of
2 meter audio link and still operate in Sky Command COMMANDER mode.

It is very easy to BUILD a skycommand III system TRANSPORTER with a
D700 radio's internal TNC and some external software. So this investment
in SkyCommand III can multiply more than just the new radios sold.
SkyCommand III also willbe fully backwards compatible to II's.

SOFTWARE TRANSPORTER: My next document will describe tha backwards
compatible SkyCommand II+ system that can run on a PC between a D700
TNC and a TS-2000. This PC software can implement many of the advantages
of SkyCOmmand III and be compatible with existing D700's.

More thinking needed.

Bob Bruninga, WB4APR

http://wa8lmf.net/bruninga/aprs/skycommandIII.txt

22 februarie 2010

Un nou mod digital - ROS

Pe 18 februarie 2010, 20:56 UTC a fost transmis pentru prima data un mesaj in noul mod digital ROS.
Acest mesaj a fost trimis de EA2LE din Vitoria (Spania) si receptionat la Universitatea Twente (Olanda), binecunoscuta pentru preocuparile in domeniul receptiei HF (webSDR).
Frecventa pe care a fost receptionat mesajul a fost 7.065 MHz iar distanta parcursa a fost de 1265 km.
Noul mod digital opereaza asemanator cu modul Domino, desi asemanarile se opresc la faptul ca este un mod MPSK.
Cu toate acestea, producatorul il anunta ca fiind un mod Spread Spectrum (FHSS), oarecum impropriu.
Din acest motiv, in USA nu va putea fi folosit deoarece FCC interzice FHSS in benzile HF.
Totusi, pe noi, radioamatorii europeni, nimic nu ne impiedica sa il experimentam, cu atat mai mult cu cat, YO4CVV din Galati deja a trecut la experimentari.
Mi se pare extraordinar faptul ca, in program, a fost implementata o rutina de confirmare a receptiei prin email. In acest sens, programul transmite un email la receptia corecta a mesajului.
Programul permite transmisia cu 16bd sau cu 1bd, acest din urma mod fiidn adecvat pentru raport semnal zgomot foarte mic (-35dbs S/N)!
Programul se poate descarca aici: http://www.box.net/shared/voqoxl976z
In atasament este documentatia aferenta dar si programul in arhiva zip.

Ca la orice mod digital, atentie mare la incarcarea etajului final! Adica, aveti grija ca indicatia power-metrului sa arate aproximativ 75% incarcare din puterea maxima dar indicatia ALC sa nu depaseasca 5%. Cel mai bine este ca ALC sa nu indice nimic.

Frecventele propuse sunt:

* 1.840

* 3.60360 (exclusiv 1 baud)
* 3.60605 (exclusiv 16 bauds)
* 7.053
* 14.101
* 28.300

Lista de discutii despre acest nou mod digital o gasiti aici.

Pagina oficiala.

14 februarie 2010

HF Gateway Voice Operated Squelch

De multa vreme ma "bantuie" ideea de a interconecta undele scurte cu o retea locala in FM. Din nefericire, traficul in HF este, in principal, SSB iar declansarea retransmiterii semnalului SSB receptionat catre FM este destul de dificil de facut cu mijloacele traditionale.

Spre deosebire de circuitele standard de squelch utilizate in majoritatea statiilor radio si care sunt proiectate sa functioneze in relatie cu nivelul de semnal la borna de antena sau de componentele de audiofrecventa din afara spectrului audibil, aceasta schema are in vedere un raspuns la caracteristicile vocii umane. In esenta, este un discriminator FM care nu raspunde la zgomotele intalnite in benzile de unde scurte in modul de lucru SSB (heterodine, zgomot industrial etc).
Pentru prima data, circuitul a fost prezentat de Frank Reid (W9MKV) si David Link (W9YAN) in revista 73 Magazine din august 1982.
Schema este o adaptare a schemei folosite de Motorola in transceiver-ele MICOMM (HF-SSB). Jan Tarsala (WB6VRN ) si Randy Hammock (KC6HUR) au adus unele modificari pentru a putea sa foloseasca circuitul la retransmiterea canalului audio de la NASA pe un repetor local.

Schema prezentata mai jos reprezinta versiunea "originala", adaptata pentru traficul SSB si nu versiunea modificata.