14 February 2010

HF Gateway Voice Operated Squelch

De multa vreme ma "bantuie" ideea de a interconecta undele scurte cu o retea locala in FM. Din nefericire, traficul in HF este, in principal, SSB iar declansarea retransmiterii semnalului SSB receptionat catre FM este destul de dificil de facut cu mijloacele traditionale.

Spre deosebire de circuitele standard de squelch utilizate in majoritatea statiilor radio si care sunt proiectate sa functioneze in relatie cu nivelul de semnal la borna de antena sau de componentele de audiofrecventa din afara spectrului audibil, aceasta schema are in vedere un raspuns la caracteristicile vocii umane. In esenta, este un discriminator FM care nu raspunde la zgomotele intalnite in benzile de unde scurte in modul de lucru SSB (heterodine, zgomot industrial etc).
Pentru prima data, circuitul a fost prezentat de Frank Reid (W9MKV) si David Link (W9YAN) in revista 73 Magazine din august 1982.
Schema este o adaptare a schemei folosite de Motorola in transceiver-ele MICOMM (HF-SSB). Jan Tarsala (WB6VRN ) si Randy Hammock (KC6HUR) au adus unele modificari pentru a putea sa foloseasca circuitul la retransmiterea canalului audio de la NASA pe un repetor local.

Schema prezentata mai jos reprezinta versiunea "originala", adaptata pentru traficul SSB si nu versiunea modificata.



31 January 2010

TH-D7 PG-4W programming cable diagram

Well, I just received a very nice Kenwood TH-D7G(II) portable VHF/UHF radio.
The main problem was the programming of my favourites frequencies. I started to grab informations from the internet regarding the software I need and, most important, what cable to use.
The internet is very poor in informations about PG-4W, the programming cable, but there are a lot of vendors (from 12 to 25 EUR/cable) which is quite inacceptable for me... I do know how to make a PC to Radio cable!
So, I prepared myself with a RS232<>TTL adapter (with MAX232), one 2,5mm stereo jack and some lenght of cable, a female DB9 COM port and some patience...
First step was to read carefully the User manual where it states that the radio conect directly to the PC.

To be sure I was measuring the voltage on the PC conector at the radio.
It was -6V (RS232 zero logic level) which means the radio has a RS232<>TTL level adapter inside. So, indeed, tha radio connect directly to the PC Com port...
I made the connections, but the software returns (over and over...) a communication error (Timeout).
So, I started to search for a reason. Maybe the software expect some signaling on the other ports of the COM...
I realise that, when I push the "Read Radio" command on PC, on the COM port RTS appeared a voltage swing. Hmmmm..... so, the Radio <> PC cable is not so simple...
So I connected the RTS with CTS and DCD with DTR and, BINGO!!!!, all was OK!
So, here is the diagram of the PG-4W programming cable for the Kenwood TH-D7 portable radio...








 Later Edit: Tom, NV1U sent me the following diagram made on his tablet:

 TNX Tom!


!!!!!!!!!!!!!WARNING!!!!!!!!!!!!!!!
There is NO ERROR!!! The 2,5 mm plug diagram is not reverted!!!
The manual states that the tip is TxD and the ring is RxD. The TxD and the RxD on the plug ARE FROM THE RADIO VIEW
The radio transmit data to the PC by the tip of the plug and the signal goes to the RxD on COM port at the PC!


For programming the radio I use a IBM X61T with a USB<>COM adapter and the MCP-D7G, ver.1.01.

30 January 2010

OEM GPS inside TM-D710 Front Panel

Acum aproape un an, scriam aici un post despre cum am adaptat un GPS Holux pentru utilizarea pe TM D-710 cu un minim de conectica.
Am cautat un modul convenabil din punct de vedere al dimensiunilor dar si al pretului. Un alt criteriu a fost acela al sensibilitatii de receptie, intrucat antena urma sa fie obturata de capacul de plastic al panoului frontal.
Am achizitionat de la Farnell un GPS Leadtek LR9552, cu antena incorporata. Dimensiunile sunt de 25x25 mm cu o grosime de aproximativ 7 mm!
Am fost impresionat de cat de mic este modulul; practic, antena acestuia este mai mare decat montajul propriu-zis...


Asadar, aveam in cutia cu "maimute" un modul GPS. (De fapt, mai am unul, HI).
Multa vreme am incercat sa gasesc si conectorul mama, corespondent conectorului existent pe modulul GPS. Nu am reusit sa il gasesc iar astazi, am avut ideea salvatoare, asa ca am trecut la fapte!
Am taiat partea de sus a conectorului si am capatat astfel acces la pini, urmand sa lipesc direct pe ei alimentarea si iesirea de semnal NMEA.
Conectorul este foarte mic, astfel incat operatiunea se recomanda celor cu vedere buna si mana sigura.



Pentru lipirea firelor am folosit un letcon de 25W caruia i-am subtiat varful astfel incat sa nu lipesc mai multi pini deodata.
Conform fisei tehnice, modulul GPS are doua iesiri! TxDA si TxDB.


Intrucat nu stiam care dintre ele este cea care furnizeaza semnalul necesar, am lipit pe toti pinii cate un fir. De fapt, nu imi trebuiau si intrarile la modul, dar, pentru ca mi-a iesit prima lipitura, am continuat, asa, din inertie...
Ulterior, dupa identificarea pinului corect, am dezlipit celelalte fire, ca nefiind necesare.
Proba de functionare am facut-o folosind conectorul lateral al panoului de control si o sursa de alimentare exterioara (o baterie 6F22 de 9V si un stabilizator LDO de 5V). Pinul 2 de la GPS este cel care furnizeaza semnalul necesar (TxDA).

Am desfacut panoul capacul panoului frontal si am desfacut saibele de fixare de la potentiometrii de volum/squelch si de la optical encoder.


Cele doua blocuri potentiometrice sunt conectate pe doua bucatele de cablaj si, desi sunt codificate diferit, in realitate sunt identice ca valori si schema electronica, deci nici o grija ca le-ati putea incurca intre ele la montaj.
Pe placa cu componente exista o folie profilata destinata protejarii cablajulu iin zona decupata a capacului din spate. O puteti ridica fara grija, nu este prinsa nici de cablaj si nici de capac. Sub aceasta folie exista un conector flexibil si este bina sa aveti mare grija cu el!



Desfacem cele doua suruburi care fixeaza cablajul de masca si ridicam montajul.
Conectorul de 2,5mm se gaseste in stanga afisajului LCD si se observa ca este vorba de o mufa care are si circuit de autodeconectare.
In figura de mai jos se vede clar pe care dintre pini conectam firul de semnal de la GPS.


Dupa ce lipim firul de semnal de la GPS, asezam cablajul la loc in panou si folosim o degajare in PCB pentru a trece firul in spatele carcasei.
In stanga conectorului RJ45 ce foloseste la conectarea panoului frontal la unitatea centrala observam un regulator LDO. Acesta este regulatorul care furnizeaza 5V montajului.
Intre regulator si conector, pe cablaj este marcat traseul de 10V. Acest marcaj este facut exact pe traseul de GND, unde ne vom conecta cu pinul 1 de la GPS.
Pinul 7, de +5V de la GPS se va lipi direct pe pinul regulatorului LDO.



Dupa lipirea firelor de la GPS, putem face o proba:
Conectam panoul de comanda si pornim statia. In meniul APRS selectam la INPUT: GPS.
Pornim TNC-ul in regim APRS12 si apasam butonul PMON pentru a observa informatiile furnizate de modulul GPS. Dupa aproximativ 2 minute, la mine a inceput sa dea informatiile de pozitie.
Cu ESC ne intoarcem in regimul de afisare a frecventei si apasam POS. Pe afisaj ar trebui sa observam deja coordonatele locului in care ne aflam, inclusiv cu afisarea careului (KN34BK in cazul meu).
In partea din stanga sus a afisajului, va clipi "GPS"; semnificatia este aceea de semnal NMEA coerent.



Oprim statia si deconectam panoul de comanda pentru etapa urmatoare.
Dupa ce am verificat functionarea corecta, eliminam de pe capacul din spate ghidajul destinat unui beeper (nu stiu care era rostul HI). Aplicam o bucata de folie dublu adeziva pe care vom lipi modulul GPS, chiar pe partea cu antena de receptie. Am observat ca nu influenteaza cu nimic performanta receptorului GPS.


Fixam modulul dupa cum se observa din imagine si inchidem capacul de la panoul de comanda.

Din acest moment, avem un TM D-710 cu GPS incorporat in panoul frontal!

Imi cer scuze pentru calitatea imaginilor dar am folosit ce aveam la indemana, adica un telefon mobil.

Mai jos sunt cateva informatii despre modulul GPS folosit:


{Some time ago I made a GPS unit for TM D-710. Now, with a little help from Leadtek, I manage to embedd a GPS OEM unit inside the TM D-710 Control panel! Yes, I just put a GPS inside the "box". }

20-channel, miniaturized single chipset module GPS with integrated ceramic antenna

The Leadtek GPS 9952 module (LR9552) is a high sensitivity and very compact smart antenna module, with built in GPS receiver circuit. This 20-channel global positioning system (GPS) receiver is designed for a wide range of OEM applications and is based on the fast and deep GPS signal search capabilities of SiRFStarIII architecture.

Features:

  • Based on the high performance features of the SiRFstarIII single chip set
  • 20 channels with All-In-View tracking
  • Compact module size for easy integration: 25x25x8.4 mm
  • Fully automatic assembly: reflow solder assembly ready
  • Hardware compatible with SiRF GSW3 v 3. 2.2 software
  • Multiple I/O pins reserved for customizing special user applications
  • Low power consumption: up to 70 mA, and extra high sensitivity: -158dBm
  • RoHS compliance
  • Cold/Warm/Hot Start Time: 4 2 /38/ 1 sec . at open sky and stationary environments.
  • Reacquisition Time: 0.1 second
  • RF Metal Shield for best performance in noisy environments
  • Multi-path Mitigation Hardware
  • RS232 level for GPS communications interface
  • Operating temperature: -20 ℃ to +60
  • Protocol: NMEA-0183/SiRF Binary (default NMEA)
  • Baud Rate: 4800, 19200, or 57600 baud (default 4800)
  • Ideal for high volume mass production (Taping reel package)
  • Cost saving through elimination of RF and board to board digital connectors

TECHNICAL SPECIFICATIONS:

Chipset SiRFstarIII single chipset (GSC 3f )
General Frequency L1, 1575.42 MHz (C/A code 1.023 MHz chip rate)
Channels 20
Sensitivity -159 dBm

Accuracy

Position 10 meters, 2D RMS
5 meters 2D RMS, WAAS corrected
<5meters(50%)>Velocity 0.1 meters/second
Time 1 microsecond synchronized to GPS time
Datum Default WGS-84
Other selectable for other Datum

Time to First Fix (TTFF)
(Open Sky & Stationary Requirements) Reacquisition 0.1 sec., average
Snap start 1 sec., average
Hot start 1 sec., average typical TTFF
Warm start 38 sec., average typical TTFF
Cold start 42 sec., average typical TTFF

Dynamic Conditions

Altitude 18,000 meters (60,000 feet) max.
Velocity 515 meters/second (1000 knots) max.
Acceleration 4g , max.
Jerk 20 meters/second 3, max.

Power

Main power input 5 +- 10% VDC input
Power consumption ≈350 mW (continuous mode)
Supply Current ≈70 mA
Backup Power 1.5 +- 10% VDC input.

Serial Port

Electrical interface Two full duplex serial TTL interface.
Protocol messages NMEA-0183/4800 bps (Default)

Time-1PPS Pulse

Level RS232 or TTL
Pulse duration The 1PPS pulse width is 1 μs, this 1PPS is NOT suited to steer various oscillators (timing receivers, telecommunications system, etc).
Time reference At the pulse positive edge.
Measurement Aligned to GPS second, ? 1 microsecond

Environmental Characteristics

Operating temperature range -20 deg. C to +60 deg. C
Storage temperature range -20 deg. C to +65 deg. C

Physical Characteristics

Length 25 mm
Width 25 mm
Height 8.9 mm (with 4mm antenna)

6.9 mm (with 4mm antenna)
Weight 13.0/8.0g

WARNING!

The Leadtek 9552 OEM GPS comes in two "flavours": RS232 and TTL I/O.
Be sure to choose and order the RS-232 version! They both share the same user manual/leaflet!
Only the RS-232 works with the TM-D710!!!

24 January 2010

Chaos on 6712 kHz (HFDL basic freq)

A couple of days ago I was monitoring 6712 kHz.
The frequency is listed for Reykjavik Ground station, but on the air was Krasnodarsk Ground station.
As was not enough strange, on the same frequency a lady was dictating numbers... No, it was not a "Numbers station" in the classic mean. It sounds more like a network controller...
At the top, was a Jamming signal...

After a few minutes, the lady ceased transmission and Reykjavik GS was back on the air!!!

Very strange!

Here is a record.

15 January 2010

Air traffic on 5655kHz

This evening, as usually, I was monitoring 5655kHz for some air traffic.
And there it was!
I was able to receive and decode HFDL from HAT-Yai Airport from Thailanda.
What was very unusual was that, on the same frequency, I was able to hear some USB Phone operations.
Anyway, It was impressive that the signal was very clear and noiseless!

Most viewed posts in last 30 days