28 August 2024

Kenwood TH-D74 battery indicator and some battery measurements

 During the years of use of my Kenwood TH-D74 I noticed that the battery indicator is a little bit confusing.

I never knew precisely how much "juice" I had in the battery from what the radio show on the LCD indicator.

So, being a brave ham I decided to put some clips on the battery contacts and make some measurements and correlate them with that little icon on the upper right side of the screen.

 

Under 7.2V:

 

7.2V - 7.4V 



7.4V - 8.0V


8.0 V - 8.4V

Between 7.2 and 7.3V, the battery indicator is changing the colour from red to green.

The observation was made with the voltage going from 8.4V to 5.5V - the lowest voltage for which the radio is still working.

Having the radio already connected to my smart power supply, I thought it is the right occasion to make some measurements for the current draw in various configurations.

Here they are...

-GPS OFF

-Battery Save OFF

-SQ ON

-TNC OFF

VFO A: 160 mA

VFO B: 168 mA

VFO A + VFO B: 205 mA

VFO A + VFO B, SQ ON, vol@1/2: 270 mA

FM Radio ON: 210 mA

SD Rec ON:  +15 mA

GPS ON: +30 mA

TNC ON: +~ 2mA

What about when transmitting?

Well, here they are, also:

EL (Extra Low)

VHF: 465 mA

UHF: 401 mA

L (Low)

VHF: 775 mA

UHF: 708 mA

M (Medium)

VHF: 1060 mA

UHF: 990 mA

H (High)

VHF: 1868 mA

UHF: 1920 mA

I want to stress out that these values are determined against my radio and can vary on others.

21 July 2024

Switched Mode Power Supply for Battery replacement in R-105m, R-108m, and R-109m radios

I do have an old Soviet "green radio" R-109m which can cover 21.5 to 28.5 MHz which makes it pretty attractive for playing in the field spooking CB-users :-) 

But, a big problem on those old radios are the batteries; they used two sets of NHK-14 each consisting in two batteries in series to get + and - 2.4V.

Since I got this radio I used a simple common ground divider and a 6V/6Ah Lead battery but the big problem is easy to spot: the battery will be quick depleted by the current that goes through the resistors.

(this schematic is from here: https://www.greenradio.de/e_schalt.htm).

I tried to find on Chinese sites a module that can convert a voltage between 9-15V to +/- 2.4V with common ground  but I couldn't find one and I did this through an extensive period of time, around 10 years.

So, being a brave ham, the next logical step was to make my own power supply...

While doing one with linear regulators like LM317 / LM337 could solve the job, the power dissipation would make them unsuitable, being just an expensive version of resistor board I tried first.

Another solution would be to use one LiIon/LiPo cell per each power line (one for positive, one for negative with common ground) but those cells have +4.2V when full charge and that could be too much for the transistor-based DC/DC converter that is built in in these radios! 

I now that first hand, I took out the smoke from a few of them when I was in the army!

 

If we take a look at the internal SMPS of this radio, we see that there is no feedback loop to regulate the output; the engineers assumed that only the proper batteries will be used.

Also, the voltage from the batteries is going to various places in the radio so the positive and negative rails will have different currents so each one must be maintained under 2.4V.

So, with the help of a few nice people that offered some valued advices, I made my first Switched Mode Power Supply from scratch.

Of course, the first iteration didn't get too well; ita failed to keep both voltages well regulated when I draw a bigger current on one of the lines, so I had to made a second one.

This time, everything went perfect!

 The PCB's looks awesome. I ordered 5 pcs.!

 
 I made three of them because I have two hams here that want this too...
 
It fits.

... and it's works too!



Next step will be to make a proper case to put the fuse, the switch and so on.

Some specs:

-Frequency: 50 KHz (+/- 5%)

-Tested input supply voltage: 7.5 to 17V.

-Input recommended voltage: 10 to 17V.

-Current draw when no load attached: 4mA

-Observed efficiency: better than 90%.

-Output voltage (settable): +/- 1.4V to +/- 5V.

-Max, Output current: 2x 2.5A  for short periods, 2x 1.5A sustained.

I did some tests at 100 KHz and it is working well too and, by choosing the right capacitors, a +/- 12V can be achieved without any problems, making it a nice power supply for other old "green radios".

Important thing is that now, I can power my military radio from a large range of batteries, from RC LiIon packs to car battery!

Here is the temperature after some time in a stress test.

Input: 13V

Current: 2.5A.

No radiators.  


By choosing the right wiring of the transformer and cooling, the SMPS can be used to power a broader range of radios with higher current or higher voltage (with right capacitors in the secondary circuit).

All relevant documentation is on Github.

Waiting for the case, I bent an aluminium strip and made a little radiator and did some stress test for a longer time.

Gate signal in blue trace and Drain signal in yellow trace.

Powered by 13.2V and 2.5A on each rail in respect to the common ground, I let it run for 2 hrs.

The only problem was the smell from the resistors...

Here are some thermal camera pics:

Overall:
 

Load:

Transistors:


Diodes:

 
Chokes:




So, after a painfull process of learning some elements of CAD I did some sort of a case, and sent it to a small factory to cut the aluminium and bend it on some machines...
And i wait, and I wait but finally, today they came!

 






24 April 2024

Expansion board for ESP32 D1Mini

 


Well, after testing a lot of ESP32 development boards, I found that the little ESP32 D1 Mini is an excellent one.


 

First of all, it is very fast when programming!

Second, you don't have to fuss around with pressing BOOT, EN/RST or other complicated procedures!

Third, never, but never the programming stopped due to communication errors (like a lot of DevKit boards).

The single inconvenient I can found, and is a big one, is the dual rows of pins!

They are hard to access, I always misread the labels because they are very crammed and I found stupid to have them on the back of the board, but this is, of course, because there is no space on the upper side.

Anyway, you get the ideea: very good boards but pretty hard to use Dupont wires to test various hardware with them.

So, I was looking to an expansion board for Arduino Nano and asked myself if I can find a similar board for D1 Mini! Back in the old days when i start with Arduino (and Nano was a cheap thing) this expansion board was a gem and help me with a lot of projects....


So, I searched for a similar one but all that I found were little boards with some sh$%# on them, none being what I was really needed!

But then, I asked myself, "why not MAKING one"?

First step is to make a PLAN! What are my expectations? How do I mostly use this dev boards? What accessories I often use? 

So, the requirements were written on a paper:

-Power supply from a various sources; both from USB and from external 6-20V.

-Multiple I2C configured to use I2C LCD with SCL, SDA, +, GND.

-I2C for 3V3 and 5V accessories.

-Every GPIO to have it's 3V3 and GND pins near for easy wiring.

-If the board is external powered, the regulated voltages to be available for other accessories.

-Multiple SPI.

-Accessible UART for ... things...

Using EasyEDA I made the schematic:

... and while waiting for the boards ordered in China, I also ordered the components.



Well, yeah, a close inspection will reveal that I made a mistake with the coaxial power Jack... I wired the wrong pin to Vcc :-( but the cutter fixed the little annoyance.


 

The 3V3 can be selected from the external power supply or from the ESP regulator:

 

I have two 3V3 I2C and two 5V I2C. Yes, i know the best practice is to have level translators but a 220 Ohm on each SDA and SCL will do the job very well...


 

3 SPI, one with the CS0 at GPIO5


UART and two regulated power outputs:

 

... and each GPIO have its GND and +3V3 near...



All files can be found on Github.








09 April 2024

ADC. Rezolutii si Volti

ADC-urile convertesc eșantioanele unui semnal analogic în valori digitale.

RezoluÈ›ia ADC-ului este numărul de biÈ›i pe care îl utilizează în vederea digitizării eÈ™antioanelor de intrare. 

Pentru un ADC pe n biÈ›i, numărul de niveluri digitale discrete care pot fi produse este 2n. 

Astfel, un digitizor pe 12 biÈ›i poate rezolva 212 sau 4096 niveluri. 

Cel mai puÈ›in semnificativ bit (lsb) reprezintă cel mai mic interval care poate fi detectat È™i, în cazul unui digitizor pe 12 biÈ›i, este 1/4096 sau 2,4 x 10-4. 

Pentru a converti lsb într-o tensiune, luăm intervalul de intrare al digitizorului și îl împărțim la doi, ridicat la rezoluția digitizorului.

27 March 2024

VFO Encoder selection for Xiegu G90

From time to time someone start searching for part number of the VFO encoder.

Here is a selection of part numbers for encoders without detent (no clicks) and with detents (like the original one).

A NOTE FROM  PA2HJK, received by e-mail:

Hello Adrian, 

Thank you for all the information about the Xiegu G90.  I used it to replace my VFO encoder but I had to reverse the outer connections  ( of the 3 pins side) of the encoder. The switch worked fine but the rotation was inversed. I have tried several encoders from Bourns and ALPS but they where all reversed.

Maybe you can add this information to your website to help other Hams.
 

73’s  Harm Jan  PA2HJK

 

An email exchange with Paul VE7NRI showed the same problem. 

A note based on IV3TEK Luca emails and practical experience:

 



On the left is the broken original encoder while in the right side is the Bourns replacement 
PEC11R-4120K-S0018.

While PEC11R-4120K-S0018 have knurled shaft, it is slightly longer than the original Chinese encoder as seend in the picture above.

 

Luca made a PVC disk to compensate for that:

If keeping the original knob is not mandatory, a flatted shaft will have the same lenght.

Thank you Luca for the detailed feedback! 


 

 

 A NOTE FROM ME:

When I searched for the proper replacement I assumed that Xiegu G90 use standard phase in it's rotary encoders and focused on dimensions and mechanichal criterias; never imagined that they are not delivering the same way. 

Therefore, it is necessary to cross the terminals (small pieces of wire) for the below encoders in order for it to function properly.

 Taken the above into account, you must cross the pins to match the rotation of the new encoder with the result of the VFO or to search for the cheap Chinese-made replacements.

To match the desire of the user, ICOM use a lever to "add" detents to some of their radios. When using in mobile, detents may be convenient while using it stationary, no detents might be the choice.

There are a lot of manufacturers that make cheap PC11 type encoder but the reliability is not very good; while they can be used in home-made projects, in the radio a more sturdy one is needed. 

Also, they might fail and most hams try to find a faster way to repair the radio than to send it back to China and wait a few months.

Therefore, here are a few options for those "brave hams" that will take the things into their hands and will repair the radio by themselves.

As a personal observation, with more than 18 pulses per revolution it is a pain to use a no detents encoder...


From BOURNS:


No detens:

PEC11R-4020K-S0018 with knurled shaft, 20mm lenght, no detents, momentary switch and 18 pulses per revolution.

PEC11R-4025F-S0018 with flatted shaft. From ALPS, EC11E, 20mm long flatted shaft (only) momentary switch.

With  detents:

PEC11R-4120K-S0018 - 20mm long shaft, knurled (4120F for flatted shaft), momentary switch.

PEC11R-4125K-S0018 - 25mm long shaft, knurled (4125F for flatted shaft), momentary switch.

 

From ALPS: 


No detents:

EC11E153440D with 15 pulses per revolution. Flatted shaft. 20mm long, momentary switch.

EC11E18344OC with 18 pulses per revolution. Flatted shaft. 20mm long, momentary switch.

With detents:

EC11E18244AU with 32 detents, 18 pulses per revolution. Flatted shaft. 20mm long, momentary switch.

EC11E15244B2  with 30 detents, 15 pulses per revolution. Flatted shaft. 20mm long, momentary switch.

 

Serrated (knurled). Please check the dimensions of the shaft for proper selection of the knob.


Without detent:

EC11G1574402 - 15 pulses per revolution, momentary switch.

With detent:

EC11G1564411 - 30 detents, 15 pulses per revolution, momentary switch.


For both producers I reccomend study their product selection datasheets which can be downloaded as pdf clicking on their names.

The pinout of the above encoders is compatible with the one in the radio.

I usually like to have longer shafts and cut them to my needs so, if you want a shorter one, just check the datasheets for the part number. 

Both manufacturers are producing compatible encoders for VFO, VOL and FUNCTION. 

 

Most viewed posts in last 30 days